Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering

Yangfei Gao, Zizheng Song, Haichao Hu, Junwen Mei, Ruirui Kang, Xiaopei Zhu, Bian Yang, Jinyou Shao, Zibin Chen, Fei Li, Shujun Zhang, Xiaojie Lou

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

As a vital material utilized in energy storage capacitors, dielectric ceramics have widespread applications in high-power pulse devices. However, the development of dielectric ceramics with both high energy density and efficiency at high temperatures poses a significant challenge. In this study, we employ high-entropy strategy and band gap engineering to enhance the energy storage performance in tetragonal tungsten bronze-structured dielectric ceramics. The high-entropy strategy fosters cation disorder and disrupts long-range ordering, consequently regulating relaxation behavior. Simultaneously, the reduction in grain size, elevation of conductivity activation energy, and increase in band gap collectively bolster the breakdown electric strength. This cascade effect results in outstanding energy storage performance, ultimately achieving a recoverable energy density of 8.9 J cm−3 and an efficiency of 93% in Ba0.4Sr0.3Ca0.3Nb1.7Ta0.3O6 ceramics, which also exhibit superior temperature stability across a broad temperature range up to 180 °C and excellent cycling reliability up to 105. This research presents an effective method for designing tetragonal tungsten bronze dielectric ceramics with ultra-high comprehensive energy storage performance.
Original languageEnglish
Article number5869
Number of pages10
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering'. Together they form a unique fingerprint.

Cite this