Optimizing differentiation protocols for producing dopaminergic neurons from human induced pluripotent stem cells for tissue engineering applications

Meghan Robinson, Suk Yu Yau, Lin Sun, Nicole Gabers, Emma Bibault, Brian R. Christie, Stephanie M. Willerth

Research output: Journal article publicationJournal articleAcademic researchpeer-review

13 Citations (Scopus)


Parkinson’s disease (PD) is a neurodegenerative disorder that results when the dopaminergic neurons (DNs) present in the substantia nigra necessary for voluntary motor control are depleted, making patients with this disorder ideal candidates for cell replacement therapy. Human induced pluri-potent stem cells (hiPSCs), obtained by reprogramming adult cells, possess the properties of pluripotency and immortality while enabling the possibility of patient-specific therapies. An effective cell therapy for PD requires an efficient, defined method of DN generation, as well as protection from the neuroin-flammatory environment upon engraftment. Although similar in pluripotency to human embryonic stem cells (hESCs), hiPSCs differentiate less efficiently into neuronal subtypes. Previous work has shown that treatment with guggulsterone can efficiently differentiate hESCs into DNs. Our work shows that guggulsterone is able to derive DNs from hiPSCs with comparable efficiency, and furthermore, this differentiation can be achieved inside three-dimensional fibrin scaffolds that could enhance cell survival upon engraftment.
Original languageEnglish
Pages (from-to)61-70
Number of pages10
JournalBiomarker Insights
Publication statusPublished - 26 May 2015
Externally publishedYes


  • Biomaterials
  • Differentiation
  • Neuroscience
  • Pluripotent stem cells
  • Tissue engineering

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology
  • Biochemistry, medical

Cite this