Abstract
In this work, we investigate the effects on the electrical properties of few-layered MoS2 field-effect transistors (FETs) following Al incorporation into ZrO2 as the gate dielectrics of the devices. A large improvement in device performance is achieved with the Al-doped ZrO2 gate dielectric when Zr:Al = 1:1. The relevant MoS2 transistor exhibits the best electrical characteristics: high carrier mobility of 40.6 cm2 V-1 s-1 (41% higher than that of the control sample, and an intrinsic mobility of 68.0 cm2 V-1 s-1), a small subthreshold swing of 143 mV dec-1, high on/off current ratio of 6 × 106 and small threshold voltage of 0.71 V. These are attributed to the facts that (i) Al incorporation into ZrO2 can decrease its oxygen vacancies; densify the dielectric film; and smooth the gate dielectric surface, thus reducing the traps at/near the Zr0.5Al0.5Oy/MoS2 interface and the gate leakage current; (ii) adjusting the dielectric constant of the gate dielectric to an appropriate value, which achieves a reasonable trade-off between the gate screening effect on the Coulomb-impurity scattering and the surface optical phonon scattering. These results demonstrate that optimized Zr0.5Al0.5Oy is a potential gate dielectric material for MoS2 FET applications.
Original language | English |
---|---|
Article number | 135206 |
Journal | Nanotechnology |
Volume | 31 |
Issue number | 13 |
DOIs | |
Publication status | Published - 14 Jan 2020 |
Keywords
- capacitance-equivalent thickness
- carrier mobility
- interface-state density
- MoS FETs
- oxide capacitance
- subthreshold swing
- ZrAO dielectric
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering