Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract

Susan Westfall, Francesca Carracci, Molly Estill, Danyue Zhao, Qing li Wu, Li Shen, James Simon, Giulio Maria Pasinetti

Research output: Journal article publicationJournal articleAcademic researchpeer-review

24 Citations (Scopus)

Abstract

The gut microbiota’s metabolome is composed of bioactive metabolites that confer disease resilience. Probiotics’ therapeutic potential hinges on their metabolome altering ability; however, characterizing probiotics’ metabolic activity remains a formidable task. In order to solve this problem, an artificial model of the human gastrointestinal tract is introduced coined the ABIOME (A Bioreactor Imitation of the Microbiota Environment) and used to predict probiotic formulations’ metabolic activity and hence therapeutic potential with machine learning tools. The ABIOME is a modular yet dynamic system with real-time monitoring of gastrointestinal conditions that support complex cultures representative of the human microbiota and its metabolome. The fecal-inoculated ABIOME was supplemented with a polyphenol-rich prebiotic and combinations of novel probiotics that altered the output of bioactive metabolites previously shown to invoke anti-inflammatory effects. To dissect the synergistic interactions between exogenous probiotics and the autochthonous microbiota a multivariate adaptive regression splines (MARS) model was implemented towards the development of optimized probiotic combinations with therapeutic benefits. Using this algorithm, several probiotic combinations were identified that stimulated synergistic production of bioavailable metabolites, each with a different therapeutic capacity. Based on these results, the ABIOME in combination with the MARS algorithm could be used to create probiotic formulations with specific therapeutic applications based on their signature metabolic activity.

Original languageEnglish
Article number1067
JournalScientific Reports
Volume11
Issue number1
DOIs
Publication statusPublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract'. Together they form a unique fingerprint.

Cite this