TY - CHAP
T1 - One-Step Generation of Hybrid Structured Surface on Brittle Material by Ultra-precision Raster Milling
AU - Zhanwen, Sun
AU - To, Suet
PY - 2023/8/24
Y1 - 2023/8/24
N2 - Hybrid micro-optics of infrared (IR) materials are of great advantage in realizing the function integration and minimization of advanced IR optical systems. However, due to the hard-and-brittle nature of IR materials, it is still challenging for both non-mechanical and mechanical technologies to achieve one-step generation of hybrid infrared micro-optics with high form accuracy. In the present study, a flexible method, namely ultra-precision side milling (UPSM), is first introduced to achieve one-step generation of infrared hybrid micro-optics in ductile mode, and the corresponding reflective diffraction characteristics are analyzed. In UPSM, the reflective/refractive primary surface of the hybrid micro-optics is formed via the removal of workpiece material, and the high-frequent secondary diffractive micro/nanostructures are simultaneously generated by the tool residual marks of cutting trajectories. With the consideration of the changing curvature of the primary surface, the optimal toolpath generation strategy is introduced to acquire the desired shapes of the secondary micro/nanostructures, and the selecting criteria of the machining parameters are discussed to avoid the brittle fractures of IR materials. In practice, two types of hybrid micro-optic components, namely hybrid micro-aspheric arrays and sinusoid grid surface with high-frequent secondary unidirectional phase gratings, are successfully fabricated on single-crystal silicon to validate the proposed method. The method adopted in this study is very promising for the deterministic fabrication of hybrid micro-optics on infrared materials.
AB - Hybrid micro-optics of infrared (IR) materials are of great advantage in realizing the function integration and minimization of advanced IR optical systems. However, due to the hard-and-brittle nature of IR materials, it is still challenging for both non-mechanical and mechanical technologies to achieve one-step generation of hybrid infrared micro-optics with high form accuracy. In the present study, a flexible method, namely ultra-precision side milling (UPSM), is first introduced to achieve one-step generation of infrared hybrid micro-optics in ductile mode, and the corresponding reflective diffraction characteristics are analyzed. In UPSM, the reflective/refractive primary surface of the hybrid micro-optics is formed via the removal of workpiece material, and the high-frequent secondary diffractive micro/nanostructures are simultaneously generated by the tool residual marks of cutting trajectories. With the consideration of the changing curvature of the primary surface, the optimal toolpath generation strategy is introduced to acquire the desired shapes of the secondary micro/nanostructures, and the selecting criteria of the machining parameters are discussed to avoid the brittle fractures of IR materials. In practice, two types of hybrid micro-optic components, namely hybrid micro-aspheric arrays and sinusoid grid surface with high-frequent secondary unidirectional phase gratings, are successfully fabricated on single-crystal silicon to validate the proposed method. The method adopted in this study is very promising for the deterministic fabrication of hybrid micro-optics on infrared materials.
KW - Ultra-precision fly cutting
KW - Hybrid micro-optics
KW - Infrared materials
U2 - 10.1007/978-981-99-0738-0_14
DO - 10.1007/978-981-99-0738-0_14
M3 - Chapter in an edited book (as author)
SN - 9789819907373
T3 - Precision Manufacturing
SP - 347
EP - 367
BT - Fly Cutting Technology for Ultra-precision Machining
A2 - Wang, Sujuan
A2 - To, Suet
PB - Springer Nature
ER -