One-dimensionally oriented self-assembly of ordered mesoporous nanofibers featuring tailorable mesophases via kinetic control

Liang Peng, Huarong Peng, Steven Wang, Xingjin Li, Jiaying Mo, Xiong Wang, Yun Tang, Renchao Che, Zuankai Wang, Wei Li, Dongyuan Zhao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

11 Citations (Scopus)

Abstract

One-dimensional (1D) nanomaterials have sparked widespread research interest owing to their fascinating physicochemical properties, however, the direct self-assembly of 1D porous nanomaterials and control over their porosity still presents a grand challenge. Herein, we report a monomicelle oriented self-assembly approach to fabricate 1D mesoporous nanostructures with uniform diameter, high aspect ratio and ordered mesostructure. This strategy features the introduction of hexamethylenetetramine as a curing agent, which can subtly control the monomicelle self-assembly kinetics, thus enabling formation of high-quality 1D ordered mesostructures. Meanwhile, the micellar structure can be precisely manipulated by changing the reactant stoichiometric ratio, resulting in tailorable mesophases from 3D cubic (Im-3m) to 2D hexagonal (p6mm) symmetries. More interestingly, the resultant mesoporous nanofibers can be assembled into 3D hierarchical cryogels on a large scale. The 1D nanoscale of the mesoporous nanofibers, in combination with small diameter (~65 nm), high aspect ratio (~154), large surface area (~452 m2 g−1), and 3D open mesopores (~6 nm), endows them with excellent performances for sodium ion storage and water purification. Our methodology opens up an exciting way to develop next-generation ordered mesoporous materials for various applications.

Original languageEnglish
Article number8148
JournalNature Communications
Volume14
Issue number1
DOIs
Publication statusPublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'One-dimensionally oriented self-assembly of ordered mesoporous nanofibers featuring tailorable mesophases via kinetic control'. Together they form a unique fingerprint.

Cite this