On the uniqueness of Gaussian ansatz parameters equations: Generalized projection operator method

Ping Kong Alexander Wai, K. Nakkeeran

Research output: Journal article publicationJournal articleAcademic researchpeer-review

20 Citations (Scopus)

Abstract

Based on the recently reported generalized projection operator method for nonlinear Schrödinger equation, one can derive two different sets of pulse parameters equations while using ansätze like hyperbolic secant or raised-cosine. We show that in case of a Gaussian like ansatz those sets of equations are unique because of the symmetric property between the ansatz parameters.
Original languageEnglish
Pages (from-to)239-243
Number of pages5
JournalPhysics Letters, Section A: General, Atomic and Solid State Physics
Volume332
Issue number3-4
DOIs
Publication statusPublished - 15 Nov 2004

Keywords

  • Gaussian ansatz
  • Lagrangian variational method
  • Nonlinear Schrödinger equation
  • Projection operator method

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'On the uniqueness of Gaussian ansatz parameters equations: Generalized projection operator method'. Together they form a unique fingerprint.

Cite this