On the triad of air PM pollution, pathogenic bioaerosols, and lower respiratory infection

Tangtian He, Ling Jin, Xiangdong Li

Research output: Journal article publicationReview articleAcademic researchpeer-review

7 Citations (Scopus)


Airborne particulate matter (PM) pollution, as a leading environmental health risk, causes millions of premature deaths globally every year. Lower respiratory infection (LRI) is a sensitive response to short-term exposure to outdoor PM pollution. The airborne transmission of etiological agents of LRI, as an important pathway for infection and morbidity, bridges the public health issues of air quality and pathogen infectivity, virulence, resistance, and others. Enormous efforts are underway to identify common pathogens and substances that are etiological agents for LRI and to understand the underlying toxicological and clinical basis of health effects by identifying mechanistic pathways. Seasonal variations and geographical disparities in the survival and infectivity of LRI pathogens are unsolved mysteries. Weather conditions in geographical areas may have a key effect, but also potentially connect LRI with short-term increases in ambient air PM pollution. Statistical associations show that short-term elevations in fine and coarse PM lead to increases in respiratory infections, but the causative agents could be chemical or microbiological and be present individually or in mixtures, and the interactions between chemical and microbiological agents remain undefined. Further investigations on high-resolution monitoring of airborne pathogens in relation to PM pollution for an integrated exposure–response assessment and mechanistic study are warranted. Improving our understanding of the spatiotemporal features of pathogenic bioaerosols and air pollutants and translating scientific evidence into effective policies is vital to reducing the health risks and devastating death toll from PM pollution. Graphical abstract: [Figure not available: see fulltext.]

Original languageEnglish
JournalEnvironmental Geochemistry and Health
Publication statusAccepted/In press - 8 Jul 2021


  • Air pollution
  • Biogeochemical factors
  • Infectious pathogens
  • Lower respiratory infection
  • Spatiotemporal patterns

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Water Science and Technology
  • General Environmental Science
  • Geochemistry and Petrology


Dive into the research topics of 'On the triad of air PM pollution, pathogenic bioaerosols, and lower respiratory infection'. Together they form a unique fingerprint.

Cite this