TY - JOUR
T1 - On the dynamic characteristics of using track nonlinear energy sinks for structural vibration control
AU - Zuo, Haoran
AU - Bi, Kaiming
AU - Zhu, Songye
AU - Ma, Ruisheng
AU - Hao, Hong
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Nonlinear energy sinks (NESs) have emerged as a promising solution to overcome the narrow effective bandwidth of linear dynamic vibration absorbers such as the tuned mass damper (TMD). In particular, track NESs are increasingly attracting attention as they are capable of generating nonlinear restoring forces by the movement of an additional mass on the curved tracks. The present study aims to investigate and explore the versatile characteristics of track NESs in structural vibration control. To this end, three different track profiles are considered, namely the profiles designed by a quartic term only, by combined positive quadratic and quartic terms, and by combined negative quadratic and positive quartic terms. Their profiles and damping coefficients are analytically derived in closed form. The frequency response functions of standalone track NESs are constructed using the Harmonic Balance Method and compared with those obtained by the 4th-order Runge-Kutta method, and the dynamic responses, including the displacements, the phase planes, the nonlinear stiffness forces, and the vibrational frequencies, of the track NESs are presented and discussed under different excitation amplitudes and frequencies. The effectiveness and robustness of using track NESs for structural vibration control are also systematically investigated and compared with TMD under harmonic and white-noise ground excitations. Results show that the closed-form solutions of optimal profile and damping coefficients are sufficiently accurate for lightly damped structures, and the frequency response functions of track NESs can be accurately estimated using the Harmonic Balance Method for low and moderate excitations, although their dynamic responses are sensitive to the excitation amplitudes and frequencies. Furthermore, in comparison to TMD, the track NESs are superior in terms of decreased stiffness and smaller working strokes. In general, the present study demonstrates the potential of using track NESs as an effective and robust alternative for structural vibration control.
AB - Nonlinear energy sinks (NESs) have emerged as a promising solution to overcome the narrow effective bandwidth of linear dynamic vibration absorbers such as the tuned mass damper (TMD). In particular, track NESs are increasingly attracting attention as they are capable of generating nonlinear restoring forces by the movement of an additional mass on the curved tracks. The present study aims to investigate and explore the versatile characteristics of track NESs in structural vibration control. To this end, three different track profiles are considered, namely the profiles designed by a quartic term only, by combined positive quadratic and quartic terms, and by combined negative quadratic and positive quartic terms. Their profiles and damping coefficients are analytically derived in closed form. The frequency response functions of standalone track NESs are constructed using the Harmonic Balance Method and compared with those obtained by the 4th-order Runge-Kutta method, and the dynamic responses, including the displacements, the phase planes, the nonlinear stiffness forces, and the vibrational frequencies, of the track NESs are presented and discussed under different excitation amplitudes and frequencies. The effectiveness and robustness of using track NESs for structural vibration control are also systematically investigated and compared with TMD under harmonic and white-noise ground excitations. Results show that the closed-form solutions of optimal profile and damping coefficients are sufficiently accurate for lightly damped structures, and the frequency response functions of track NESs can be accurately estimated using the Harmonic Balance Method for low and moderate excitations, although their dynamic responses are sensitive to the excitation amplitudes and frequencies. Furthermore, in comparison to TMD, the track NESs are superior in terms of decreased stiffness and smaller working strokes. In general, the present study demonstrates the potential of using track NESs as an effective and robust alternative for structural vibration control.
KW - Dynamic characteristic
KW - Frequency response function
KW - Harmonic balance method
KW - Track nonlinear energy sink
KW - Vibration control effectiveness
UR - http://www.scopus.com/inward/record.url?scp=85181470994&partnerID=8YFLogxK
U2 - 10.1016/j.engstruct.2023.117436
DO - 10.1016/j.engstruct.2023.117436
M3 - Journal article
AN - SCOPUS:85181470994
SN - 0141-0296
VL - 302
JO - Engineering Structures
JF - Engineering Structures
M1 - 117436
ER -