Abstract
Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. However, it is recognized that unless we can give reasonable explanations of these curious precursory phenomena that continue to be serendipitously observed from time to time, such high technology of GPS or InSAR is difficult to be efficiently used. Therefore, a proper model revealing the relation between earthquake evolution and stress variation, such as the phenomena of stress buildup, stress shadow and stress transfer (SSS), is crucial to the GPS or InSAR based earthquake prediction. Here we address this question through a numerical approach of earthquake development using an intuitive physical model with a map-like configuration of discontinuous fault system. The simulation provides a physical basis for the principle of stress-forecasting of earthquakes based on SSS and for the application of GPS or InSAR in earthquake prediction. The observed SSS associated phenomena with images of stress distribution during the failure process can be continuously simulated. It is shown that the SSS are better indicators of earthquake precursors than that of seismic foreshocks, suggesting a predictability of earthquakes based on stress-forecasting strategy.
Original language | English |
---|---|
Pages (from-to) | 53-62 |
Number of pages | 10 |
Journal | Earthquake Science |
Volume | 22 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Feb 2009 |
Keywords
- Earthquake
- Stress buildup
- Stress shadow
- Stress transfer
- Stress-forecasting
ASJC Scopus subject areas
- Geotechnical Engineering and Engineering Geology
- Geophysics
- Geology