Observer-based coordinated control for blended braking system with actuator delay

Wenfei Li, Huiyun Li, Chao Huang, Kun Xu, Tianfu Sun, Haiping Du

Research output: Journal article publicationJournal articleAcademic researchpeer-review

5 Citations (Scopus)

Abstract

The coordinated control of a blended braking system is always a difficult task. In particu-lar, blended braking control becomes more challenging when the braking actuator has an input time-delay and some states of the braking system cannot be measured. In order to improve the tracking performance, a coordinated control system was designed based on the input time-delay and state observation for a blended braking system comprising a motor braking system and friction braking system. The coordinated control consists of three parts: Sliding mode control, a multi-input single-output observer, and time-delay estimation-based Smith Predictor control. The sliding mode control is used to calculate the total command braking torque according to the desired braking performance and vehicle states. The multi-input single-output observer is used to simultaneously esti-mate the input time-delay and output braking torque of the friction braking system. With time-delay estimation-based Smith Predictor control, the friction braking system is able to effectively track the command braking torque of the friction braking system. The tracking of command braking torque is realized through the coordinated control of the motor braking system and friction braking system. In order to validate the effectiveness of the proposed approach, numerical simulations on a quarter-vehicle braking model were performed.

Original languageEnglish
Article number193
JournalActuators
Volume10
Issue number8
DOIs
Publication statusPublished - 11 Aug 2021

Keywords

  • Friction braking torque observer
  • Sliding mode control
  • Smith Predictor
  • Time-delay observer

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Observer-based coordinated control for blended braking system with actuator delay'. Together they form a unique fingerprint.

Cite this