Numerical simulations on thermal plumes with k-ε types of turbulence models

Wan Ki Chow, J. Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

18 Citations (Scopus)

Abstract

Building fire field models or application of computational fluid dynamics (CFD) for studying fire environment is used extensively for both academic research and practical safety design. There are three key elements in a field model: turbulence modelling, discretization of the conservation equations, and algorithms in solving the velocity-pressure linked equation. All three parts must be evaluated carefully in order to give a good model. In this paper, four turbulence models were assessed by simulating fire-induced thermal plumes where experimental data are available. Experiments on pool fires and heptane spray fires reported in the literature are taken as the example. Since the k-ε turbulence model is widely used for its robustness and simplicity, the standard k-ε turbulence model and its three other modified forms were tested. These were the low-Reynolds number (LRN) k-ε model, Chen-Kim modified k-ε model (CK model) and renormalization group (RNG)-derived k-ε model. Numerical results are compared with the experimental data. It is found that a more complicated form of k-ε model might not give better results. An alternative approach is to tune the parameters concerned on a simpler model.
Original languageEnglish
Pages (from-to)2819-2828
Number of pages10
JournalBuilding and Environment
Volume42
Issue number8
DOIs
Publication statusPublished - 1 Aug 2007

ASJC Scopus subject areas

  • Environmental Engineering
  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Building and Construction

Cite this