Numerical simulation and experimental validation of the swirling turbulent air flow and mixing processes

Hong Tao Xu, Jianlei Niu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

12 Citations (Scopus)

Abstract

The work reported in this article investigates the influences of inlet boundary conditions on the precombustion chamber internal flow patterns, validated by experimental data. An axial fixed-vane swirling diffuser with 12 vanes of declining angle 20° is used for the primary air flow. For the swirling air flow inlet boundary condition specifications, two methods are compared employing the standard κ-ε turbulence model The conventional method is to specify the inlet velocities based on totally constant axial and tangential momentum fluxes. For the new method, the whole simulation domain is extended to the supply duct, and detailed air flows between the supply swirling diffuser and precombustion chamber are linked using the multigrid technique. Comparisons with experimental data reveal that the new method can more accurately predict turbulent airflows and mixing processes near the swirling diffuser, and consequently more accurately predict the size of the recirculation zone, and farther downstream velocities and air jet mass fractions.
Original languageEnglish
Pages (from-to)571-586
Number of pages16
JournalNumerical Heat Transfer; Part A: Applications
Volume46
Issue number6
DOIs
Publication statusPublished - 1 Oct 2004

ASJC Scopus subject areas

  • Mechanics of Materials
  • Computational Mechanics
  • Physical and Theoretical Chemistry
  • Fluid Flow and Transfer Processes
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Numerical simulation and experimental validation of the swirling turbulent air flow and mixing processes'. Together they form a unique fingerprint.

Cite this