Numerical methods to improve the computational efficiency of thermal analysis for the die casting process

S. M. Xiong, F. Lau, Wing Bun Lee, L. R. Jia

Research output: Journal article publicationReview articleAcademic researchpeer-review

15 Citations (Scopus)

Abstract

The temperature distributions in the die casting and the dies are of great influence on the quality of the die casting and the life cycle of the dies, so that many efforts have been made in the numerical simulation of heat transfer in the die casting process. In order to improve the computational efficiency of thermal analysis of the die casting process, three kinds of numerical methods were employed. First, the component-wise splitting method was adopted to solve the three-dimensional heat transfer problem in the die casting process. The method is unconditionally stable and suitable for simulating fast transient phenomena and for computations on fine meshes. Secondly, an irregular mesh system was developed to reduce the total grid number of the analysis system. The corresponding finite difference algorithm of the component-wise splitting method was also developed. Thirdly, a transient surface layer concept was used to divide the computational area into a transient area and a steady area, where different time steps can be applied to these areas to improve the computational efficiency. A three-dimensional thermal analysis system was developed with the numerical methods and a practical die casting component was simulated with focus on the computational efficiency.
Original languageEnglish
Pages (from-to)457-461
Number of pages5
JournalJournal of Materials Processing Technology
Volume139
Issue number1-3 SPEC
DOIs
Publication statusPublished - 20 Aug 2003

Keywords

  • Computational efficiency
  • Die casting
  • Thermal analysis

ASJC Scopus subject areas

  • Materials Science(all)

Cite this