TY - JOUR
T1 - Non-Fluorinated Ethers to Mitigate Electrode Surface Reactivity in High-Voltage NCM811-Li Batteries
AU - Wang, Zhijie
AU - Che, Xiangli
AU - Wang, Danni
AU - Wang, Yanyan
AU - He, Xiaomei
AU - Zhu, Ye
AU - Zhang, Biao
N1 - Publisher Copyright:
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
PY - 2024/6/17
Y1 - 2024/6/17
N2 - Lithium (Li) metal batteries (LMBs) with nickel (Ni)-rich layered oxide cathodes exhibit twice the energy density of conventional Li-ion batteries. However, their lifespan is limited by severe side reactions caused by high electrode reactivity. Fluorinated solvent-based electrolytes can address this challenge, but they pose environmental and biological hazards. This work reports on the molecular engineering of fluorine (F)-free ethers to mitigate electrode surface reactivity in high-voltage Ni-rich LMBs. By merely extending the alkyl chains of traditional ethers, we effectively reduce the catalytic reactivity of the cathode towards the electrolyte at high voltages, which suppresses the oxidation decomposition of the electrolyte, microstructural defects and rock-salt phase formation in the cathode, and gas release issues. The high-voltage Ni-rich NCM811-Li battery delivers capacity retention of 80 % after 250 cycles with a high Coulombic efficiency of 99.85 %, even superior to that in carbonate electrolytes. Additionally, this strategy facilitates passivation of the Li anode by forming a robust solid-electrolyte interphase, boosting the Li reversibility to 99.11 % with a cycling life of 350 cycles, which outperforms conventional F-free ether electrolytes. Consequently, the lifespan of practical LMBs has been prolonged by over 100 % and 500 % compared to those in conventional carbonate- and ether-based electrolytes, respectively.
AB - Lithium (Li) metal batteries (LMBs) with nickel (Ni)-rich layered oxide cathodes exhibit twice the energy density of conventional Li-ion batteries. However, their lifespan is limited by severe side reactions caused by high electrode reactivity. Fluorinated solvent-based electrolytes can address this challenge, but they pose environmental and biological hazards. This work reports on the molecular engineering of fluorine (F)-free ethers to mitigate electrode surface reactivity in high-voltage Ni-rich LMBs. By merely extending the alkyl chains of traditional ethers, we effectively reduce the catalytic reactivity of the cathode towards the electrolyte at high voltages, which suppresses the oxidation decomposition of the electrolyte, microstructural defects and rock-salt phase formation in the cathode, and gas release issues. The high-voltage Ni-rich NCM811-Li battery delivers capacity retention of 80 % after 250 cycles with a high Coulombic efficiency of 99.85 %, even superior to that in carbonate electrolytes. Additionally, this strategy facilitates passivation of the Li anode by forming a robust solid-electrolyte interphase, boosting the Li reversibility to 99.11 % with a cycling life of 350 cycles, which outperforms conventional F-free ether electrolytes. Consequently, the lifespan of practical LMBs has been prolonged by over 100 % and 500 % compared to those in conventional carbonate- and ether-based electrolytes, respectively.
KW - cathode surface reactivity
KW - high-voltage batteries
KW - Ni−O bond covalency
KW - Non-fluorinated ethers
KW - rock-salt phase formation
UR - http://www.scopus.com/inward/record.url?scp=85193019825&partnerID=8YFLogxK
U2 - 10.1002/anie.202404109
DO - 10.1002/anie.202404109
M3 - Journal article
C2 - 38624089
AN - SCOPUS:85193019825
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 25
M1 - e202404109
ER -