Non-exemplar Online Class-Incremental Continual Learning via Dual-Prototype Self-Augment and Refinement

Fushuo Huo, Wenchao Xu, Jingcai Guo, Haozhao Wang, Yunfeng Fan

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

This paper investigates a new, practical, but challenging problem named Non-exemplar Online Class-incremental continual Learning (NO-CL), which aims to preserve the discernibility of base classes without buffering data examples and efficiently learn novel classes continuously in a single-pass (i.e., online) data stream. The challenges of this task are mainly two-fold: (1) Both base and novel classes suffer from severe catastrophic forgetting as no previous samples are available for replay. (2) As the online data can only be observed once, there is no way to fully re-train the whole model, e.g., re-calibrate the decision boundaries via prototype alignment or feature distillation. In this paper, we propose a novel Dual-prototype Self-augment and Refinement method (DSR) for NO-CL problem, which consists of two strategies: 1) Dual class prototypes: vanilla and high-dimensional prototypes are exploited to utilize the pre-trained information and obtain robust quasi-orthogonal representations rather than example buffers for both privacy preservation and memory reduction. 2) Self-augment and refinement: Instead of updating the whole network, we optimize high-dimensional prototypes alternatively with the extra projection module based on self-augment vanilla prototypes, through a bi-level optimization problem. Extensive experiments demonstrate the effectiveness and superiority of the proposed DSR in NO-CL.

Original languageEnglish
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages12698-12707
Number of pages10
Edition11
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
Publication statusPublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number11
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period20/02/2427/02/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Non-exemplar Online Class-Incremental Continual Learning via Dual-Prototype Self-Augment and Refinement'. Together they form a unique fingerprint.

Cite this