NLOS correction/exclusion for GNSS measurement using RAIM and city building models

Li Ta Hsu, Yanlei Gu, Shunsuke Kamijo

Research output: Journal article publicationJournal articleAcademic researchpeer-review

65 Citations (Scopus)

Abstract

Currently, global navigation satellite system (GNSS) receivers can provide accurate and reliable positioning service in open-field areas. However, their performance in the downtown areas of cities is still affected by the multipath and none-line-of-sight (NLOS) receptions. This paper proposes a new positioning method using 3D building models and the receiver autonomous integrity monitoring (RAIM) satellite selection method to achieve satisfactory positioning performance in urban area. The 3D building model uses a ray-tracing technique to simulate the line-of-sight (LOS) and NLOS signal travel distance, which is well-known as pseudorange, between the satellite and receiver. The proposed RAIM fault detection and exclusion (FDE) is able to compare the similarity between the raw pseudorange measurement and the simulated pseudorange. The measurement of the satellite will be excluded if the simulated and raw pseudoranges are inconsistent. Because of the assumption of the single reflection in the ray-tracing technique, an inconsistent case indicates it is a double or multiple reflected NLOS signal. According to the experimental results, the RAIM satellite selection technique can reduce by about 8.4% and 36.2% the positioning solutions with large errors (solutions estimated on the wrong side of the road) for the 3D building model method in the middle and deep urban canyon environment, respectively.

Original languageEnglish
Pages (from-to)17329-17349
Number of pages21
JournalSensors (Switzerland)
Volume15
Issue number7
DOIs
Publication statusPublished - 17 Jul 2015
Externally publishedYes

Keywords

  • 3D maps
  • Building models
  • Consistency check
  • GNSS
  • GPS
  • Multipath
  • NLOS
  • Particle filter
  • RAIM
  • Urban canyon

ASJC Scopus subject areas

  • Analytical Chemistry
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Cite this