Abstract
Wurtzite-type gallium nitride (GaN) nanowires, with single crystalline and twin structures, were simultaneously synthesized via chemical vapor deposition (CVD) method. High-resolution transmission electron microscopy (HRTEM) was utilized to characterize different twin boundaries (TBs), (103) type TB in acute-angle twin structures, and (304) type TB in obtuse-angle twin structures. In special, the new (304) TB was reported and identified at atomic scale for the first time. With the assistance of molecular dynamics (MD) simulations, the growth mechanism to interpret the prevalence of these obtuse-angle twin nanowires with higher energy of TB is discussed.
Original language | English |
---|---|
Pages (from-to) | 12895-12901 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry C |
Volume | 117 |
Issue number | 24 |
DOIs | |
Publication status | Published - 20 Jun 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films