Neuro-perceptive discrimination on fabric tactile stimulation by Electroencephalographic (EEG) spectra

Jiao Jiao, Xiaoling Hu, Yanhuan Huang, Junyan Hu, Chihchia Hsing, Zhangqi Lai, Calvin Wong, John H. Xin

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

The precise evaluation of sensory perceptions during fabric-skin interactions is still poorly understood in neuroscience. This study aims to investigate the cortical sensory response to fabric stimuli with different textiles by Electroencephalographic (EEG) spectral intensities, and evaluate the relationships between EEG frequency bands, traditional subjective questionnaires, and the materials’ physical properties. Twelve healthy adult participants were recruited to test three fabrics with different textile compositions of 1) cotton, 2) nylon, and 3) polyester and wool. The physical properties of the fabrics were quantitatively evaluated by a Fabric Touch Tester (FTT). Subjects were invited to rate the sensory perception of the fabric samples via a subjective questionnaire and objective EEG recording. Significant differences in the EEG relative spectral power of Theta and Gamma bands were acquired in response to the different fabric stimuli (P<0.05). The Theta and Gamma powers demonstrated a significant correlation with the most of the subjective sensations evaluated by questionnaire and the fabrics’ physical properties by FTT (P<0.05). The EEG spectral analysis could feasibly be used for the discrimination of fabric stimuli with different textile compositions and further indicates sensory perceptions during fabric stimulation. This finding may provide evidence for further exploratory research of sensory perceptions via EEG spectral analysis, which could be applied to the study of brain generators of skin tactility in future prostheses and the automatic detection of sensory perception in industries.

Original languageEnglish
Article numbere0241378
JournalPLoS ONE
Volume15
Issue number10 October
DOIs
Publication statusPublished - Oct 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this