Neural Super-Resolution for Real-Time Rendering with Radiance Demodulation

Jia Li, Ziling Chen, Xiaolong Wu, Lu Wang, Beibei Wang, Lei Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

6 Citations (Scopus)

Abstract

It is time-consuming to render high-resolution images in applications such as video games and virtual reality, and thus super-resolution technologies become increasingly popular for real-time rendering. However, it is challenging to preserve sharp texture details, keep the temporal stability and avoid the ghosting artifacts in real-time super-resolution rendering. To address this issue, we introduce radiance demodulation to separate the rendered image or radiance into a lighting component and a material component, considering the fact that the light component is smoother than the rendered image so that the high-resolution material component with detailed textures can be easily obtained. We perform the super-resolution on the lighting component only and re-modulate it with the high-resolution material component to obtain the final super-resolution image with more texture details. A reliable warping module is proposed by explicitly marking the occluded regions to avoid the ghosting artifacts. To further enhance the temporal stability, we design a frame-recurrent neural network and a temporal loss to aggregate the previous and current frames, which can better capture the spatial-temporal consistency among reconstructed frames. As a result, our method is able to produce temporally stable results in real-time rendering with high-quality details, even in the challenging 4 × 4 super-resolution scenarios. Code is available at: https://github.com/Riga2/NSRD.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages4357-4367
Number of pages11
ISBN (Electronic)9798350353006
DOIs
Publication statusPublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Keywords

  • Rendering
  • Super-resolution

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Neural Super-Resolution for Real-Time Rendering with Radiance Demodulation'. Together they form a unique fingerprint.

Cite this