Nd-YAG laser surface melting of aluminum alloy 6013 for improving stress corrosion cracking resistance

Zhang Li, Wenlong Xu, Tai Man Yue

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Laser surface melting (LSM) of aluminum alloy 6013 was conducted using a high power Nd-YAG laser under nitrogen gas with the aim of improving the stress corrosion cracking (SCC) resistance of the alloy. The SCC behavior was studied in a 3.5% NaCl solution using a slow strain rate test (SSRT). A laser-melted layer in the order of 500 [in] thick was produced, which consists of fine dendritic and cellular structures with some Al-Si-Cu-Fe-Mn phase particles formed at interdentritic boundaries. The results of the SSRT test showed that the susceptibility of the alloy to SCC, in terms of total elongation to failure, was decreased after the laser surface modification. This was considered to be attributed to the presence of the laser-formed AlN film, which acted as a barrier to the ingress of the corrosive Cl-into the material and enhanced the pitting resistance of the material. An examination of the fractured surface indicated that the crack propagation path, in the early stage of SCC, was along the tortuous dendrite and cell boundaries. This caused the crack path deviated from the growing direction and resulted in a longer crack length covered before failure thus increasing the overall crack propagation resistance.
Original languageEnglish
Title of host publicationMulti-Functional Materials and Structures III
Pages1047-1050
Number of pages4
DOIs
Publication statusPublished - 1 Dec 2010
Event3rd International Conference on Multi-Functional Materials and Structures, MFMS 2010 - Jeonju, Korea, Republic of
Duration: 14 Sep 201018 Sep 2010

Publication series

NameAdvanced Materials Research
Volume123-125
ISSN (Print)1022-6680

Conference

Conference3rd International Conference on Multi-Functional Materials and Structures, MFMS 2010
Country/TerritoryKorea, Republic of
CityJeonju
Period14/09/1018/09/10

Keywords

  • Aluminum alloy
  • Laser surface melting
  • Slow strain rate test
  • Stress corrosion cracking

ASJC Scopus subject areas

  • Engineering(all)

Cite this