Nature-Inspired, 3D Origami Solar Steam Generator toward Near Full Utilization of Solar Energy

Seunghyun Hong, Yusuf Shi, Renyuan Li, Chenlin Zhang, Yong Jin, Peng Wang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

105 Citations (Scopus)

Abstract

Solar steam generation, due to its capability of producing clean water directly by solar energy, is emerging as a promising eco-friendly and energy-efficient technology to address global challenges of water crisis and energy shortage. Although diverse materials and architectures have been explored to improve solar energy utilization, high efficiency in solar steam generation could be accomplished only with external optical and thermal management. For the first time, we report a deployable, three-dimensional (3D) origami-based solar steam generator capable of near full utilization of solar energy. This auxetic platform is designed based on Miura-ori tessellation and is able to efficiently recover radiative and convective heat loss as well as to trap solar energy via its periodic concavity pattern. The 3D solar steam generator device with a nanocarbon composite of graphene oxide and carbon nanotubes being photothermal component in this work shows a very strong dependence between its solar energy efficiency and surface areal density. The device yields an extraordinary solar energy efficiency close to 100% under 1 sun illumination at a highly folded configuration. The 3D origami device can withstand a great number of folding and unfolding cycles and shows unimpaired solar steam generation performances. The unique structural feature of the 3D origami structure offers a new insight into the future development of highly efficient and easily deployable solar steam generator.

Original languageEnglish
Pages (from-to)28517-28524
Number of pages8
JournalACS Applied Materials and Interfaces
Volume10
Issue number34
DOIs
Publication statusPublished - 29 Aug 2018
Externally publishedYes

Keywords

  • carbon nanocomposites
  • Miura origami
  • photothermal conversion
  • solar energy utilization
  • solar steam generation

ASJC Scopus subject areas

  • Materials Science(all)

Cite this