Nanoscale characterization of zein self-assembly

Yi Wang, Graciela W. Padua

Research output: Journal article publicationJournal articleAcademic researchpeer-review

136 Citations (Scopus)

Abstract

Zein, a major protein of corn, is rich in α-helical structure. It has an amphiphilic character and is capable of self-assembly. Zein can self-assemble into various mesostructures that may find applications in food, agricultural, and biomedical engineering. Understanding the mechanism of zein self-assembly at the nanoscale is important for further development of zein structures. In this work, high-resolution transmission electron microscopy (TEM) images revealed nanosize zein stripes, rings, and discs containing a 0.35 nm periodicity, which is characteristic of β-sheet. TEM images were interpreted in terms of the transformation of original α-helices into β-sheet conformation after evaporation-induced self-assembly (EISA). The presence of β-sheet was also detected by circular dichroism (CD) spectroscopy. Zein β-sheets self-assembled into stripes, which curled into rings. Rings formed discs and eventually spheres. The formation of zein nanostructures was believed to be the result of β-sheet orientation, alignment, and packing.
Original languageEnglish
Pages (from-to)2429-2435
Number of pages7
JournalLangmuir
Volume28
Issue number5
DOIs
Publication statusPublished - 7 Feb 2012
Externally publishedYes

ASJC Scopus subject areas

  • Electrochemistry
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Materials Science(all)
  • Spectroscopy

Cite this