Nano-optomechanical static random access memory (SRAM)

B. Dong, H. Cai, Y. D. Gu, Z. C. Yang, Y. F. Jin, Y. L. Hao, D. L. Kwong, A. Q. Liu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

3 Citations (Scopus)

Abstract

This paper reports an on chip nano-optomechanical SRAM, which is integrated with light modulation system on a single silicon chip. In particular, a doubly-clamped silicon beam shows bistability due to the non-linear optical gradient force generated from a ring resonator. The memory states are assigned with two stable deformation positions, which can be switched by modulating the control light's power with the integrated optical modulator. The optical SRAM has write/read time around 120 ns, which is much faster as compared with traditional MEMS memory. Meanwhile, the write and read processes can happen concurrently without interference, which further reduces the time as compared with conventional electrical enabled SRAM.

Original languageEnglish
Title of host publication2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages49-52
Number of pages4
EditionFebruary
ISBN (Electronic)9781479979554
DOIs
Publication statusPublished - 26 Feb 2015
Externally publishedYes
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 18 Jan 201522 Jan 2015

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
NumberFebruary
Volume2015-February
ISSN (Print)1084-6999

Conference

Conference2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
Country/TerritoryPortugal
CityEstoril
Period18/01/1522/01/15

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Nano-optomechanical static random access memory (SRAM)'. Together they form a unique fingerprint.

Cite this