Abstract
The emerging nanotechnology has ushered a new avenue to tailor conventional composite materials. In this study, a new kind of nano-engineered composite material has been developed with a self-sensing capability for guided ultrasonic waves (GUWs)- based structural health monitoring (SHM). In the composites, a graphene-based selfsensing network is designed, developed and "dispersed" in the epoxy matrix of conventional glass fibre-reinforced composites. The nano-structure of the graphene conductive network is optimized, via which the quantum tunnelling effect formed in the network is linked to material elastic deformation when GUWs traverse the composites, via measuring the changes in the conductivity of the dispersed network. Measurement can be implemented at any position of the composites, owing to the "dispersed" sensing capability of the composites, and this renders a possibility to monitor GUW propagation throughout the entire composite structures at any desired position of the structures, while without a need to use any additional sensor externally attached to or internally embedded in the composites. Experimental validation is conducted, in which GUWs that are self-sensed by the composites are compared with the counterpart signals obtained by conventional sensors (piezoelectric wafers), to observe that the developed composites can be responsive to GUWs with frequencies in an ultrasonic regime up to several hundreds of kilohertz, with no prominent discrepancy compared with conventional piezoelectric wafers. This study has spotlighted a new breed of composites with a capacity of self-sensing and self-diagnosis towards online health monitoring of composite materials and structures.
Original language | English |
---|---|
Title of host publication | Structural Health Monitoring 2017 |
Subtitle of host publication | Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017 |
Publisher | DEStech Publications |
Pages | 1913-1920 |
Number of pages | 8 |
Volume | 2 |
ISBN (Electronic) | 9781605953304 |
Publication status | Published - 1 Jan 2017 |
Event | 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 - Stanford University, Stanford, United States Duration: 12 Sept 2017 → 14 Sept 2017 |
Conference
Conference | 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 |
---|---|
Country/Territory | United States |
City | Stanford |
Period | 12/09/17 → 14/09/17 |
ASJC Scopus subject areas
- Health Information Management
- Computer Science Applications