Abstract
Myosin VI is the only known molecular motor that moves toward the minus ends of actin filaments; thus, it plays unique roles in diverse cellular processes. The processive walking of myosin VI on actin filaments requires dimerization of the motor, but the protein can also function as a nonprocessive monomer. The molecular mechanism governing the monomer-dimer conversion is not clear. We report the high-resolution NMR structure of the cargo-free myosin VI cargo-binding domain (CBD) and show that it is a stable monomer in solution. The myosin VI CBD binds to a fragment of the clathrin-coated vesicle adaptor Dab2 with a high affinity, and the X-ray structure of the myosin VI CBD in complex with Dab2 reveals that the motor undergoes a cargo-binding-mediated dimerization. The cargo-binding-induced dimerization may represent a general paradigm for the regulation of processivity for myosin VI as well as other myosins, including myosin VII and myosin X.
Original language | English |
---|---|
Pages (from-to) | 537-548 |
Number of pages | 12 |
Journal | Cell |
Volume | 138 |
Issue number | 3 |
DOIs | |
Publication status | Published - 7 Aug 2009 |
Keywords
- CELLBIO
ASJC Scopus subject areas
- General Biochemistry,Genetics and Molecular Biology