Multistep nucleation visualized during solid-state crystallization

Zhouyang Zhang, Yujie Tang, Yiran Ying, Junqing Guo, Min Gan, Yateng Jiang, Chunxian Xing, Shanshan Pan, Ming Xu, Yangbo Zhou, Haitao Zhang, Chi Wah Leung, Haitao Huang, Chee Leung Mak, Linfeng Fei

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the “two-step” mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.

Original languageEnglish
Pages (from-to)1670-1678
Number of pages9
JournalMaterials Horizons
Volume9
Issue number6
DOIs
Publication statusPublished - 19 Apr 2022

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Process Chemistry and Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Multistep nucleation visualized during solid-state crystallization'. Together they form a unique fingerprint.

Cite this