Multiresolution-Based Rough Fuzzy Possibilistic-Means Clustering Method for Land Cover Change Detection

Tong Xiao, Yiliang Wan, Jianjun Chen, Wenzhong Shi, Jianxin Qin, Deping Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Object-oriented change detection (OOCD) plays an important role in remote sensing change detection. Generally, most of current OOCD methods adopt the highest predicted probability to determine whether objects have changes. However, it ignores the fact that only parts of an object have changes, which will generate the uncertain classification information. To reduce the classification uncertainty, an improved rough-fuzzy possibilistic c -means clustering algorithm combined with multiresolution scales information (MRFPCM) is proposed. First, stacked bitemporal images are segmented using the multiresolution segmentation approach from coarse to fine scale. Second, objects at the coarsest scale are classified into changed, unchanged, and uncertain categories by the proposed MRFPCM. Third, all the changed and unchanged objects in previous scales are combined as training samples to classify the uncertain objects into new changed, unchanged, and uncertain objects. Finally, segmented objects are classified layer by layer based on the MRFPCM until there are no uncertain objects. The MRFPCM method is validated on three datasets with different land change complexity and compared with five widely used change detection methods. The experimental results demonstrate the effectiveness and stability of the proposed approach.
Original languageEnglish
Pages (from-to)570
Number of pages580
JournalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volume16
Publication statusPublished - 12 Dec 2022

Fingerprint

Dive into the research topics of 'Multiresolution-Based Rough Fuzzy Possibilistic-Means Clustering Method for Land Cover Change Detection'. Together they form a unique fingerprint.

Cite this