Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

Chen Liu, Jiang Wang, Lin Wang, Haitao Yu, Bin Deng, Xile Wei, Kaiming Tsang, Wai Lok Chan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

7 Citations (Scopus)

Abstract

The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge.
Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalChaos, Solitons and Fractals
Volume59
DOIs
Publication statusPublished - 1 Feb 2014

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses'. Together they form a unique fingerprint.

Cite this