Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection

Qi Dou, Hao Chen, Lequan Yu, Jing Qin, Pheng Ann Heng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

565 Citations (Scopus)

Abstract

Objective: False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. Methods: We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. Results: The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Conclusion: Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. Significance: While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.
Original languageEnglish
Article number7576695
Pages (from-to)1558-1567
Number of pages10
JournalIEEE Transactions on Biomedical Engineering
Volume64
Issue number7
DOIs
Publication statusPublished - 1 Jul 2017

Keywords

  • 3-D convolutional neural networks
  • Computer-aided diagnosis
  • deep learning
  • false positive reduction
  • pulmonary nodule detection

ASJC Scopus subject areas

  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection'. Together they form a unique fingerprint.

Cite this