Multiagent spatial simulation of autonomous taxis for urban commute: Travel economics and environmental impacts

Miaojia Lu, Morteza Taiebat, Ming Xu, Shu Chien Hsu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

24 Citations (Scopus)

Abstract

With the likelihood of autonomous vehicle technologies in public transport and taxi systems increasing, their impact on commuting in real-world road networks is insufficiently studied. In this study, an agent-based model is developed to simulate how commuters travel by autonomous taxis (aTaxis) in real-world road networks. The model evaluates the travel costs and environmental implications of substituting conventional personal vehicle travel with aTaxi travel. The proposed model is applied to the city of Ann Arbor, Michigan, to demonstrate the effectiveness of aTaxis. The results indicate that to meet daily commute demand with wait times less than 3 min, the optimized autonomous taxi fleet size is only 20% of the conventional solo-commuting personal car fleet. Commuting cost decreases by 38%, and daily vehicle utilization increases from 14 to 92 min When using internal combustion engine aTaxis, energy consumption, greenhouse gas (GHG) emissions, and SO2 emissions are respectively 16, 25, and 10% higher than conventional solo commuting, mainly because of unoccupied repositioning between trips. Given the emission intensity of the local electricity grid, the environmental impacts of electric aTaxis do not show significant improvement over conventional vehicles.

Original languageEnglish
Article number04018033
JournalJournal of Urban Planning and Development
Volume144
Issue number4
DOIs
Publication statusPublished - 1 Dec 2018

Keywords

  • Autonomous vehicle
  • Commute travel
  • Environmental impact
  • Multiagent simulation

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Development
  • Urban Studies

Cite this