TY - GEN
T1 - Multi-view information-theoretic co-clustering for co-occurrence data
AU - Xu, Peng
AU - Deng, Zhaohong
AU - Choi, Kup Sze
AU - Cao, Longbing
AU - Wang, Shitong
N1 - Funding Information:
This work was supported in part by the National Key Research Program of China (2016YFB0800803), the NSFC (61772239), the Jiangsu Province Outstanding Youth Fund (BK20140001), the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-02), and Basic Research Program of Jiangnan University Key Project in Social Sciences JUSRP1810ZD.
Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019/1/27
Y1 - 2019/1/27
N2 - Multi-view clustering has received much attention recently. Most of the existing multi-view clustering methods only focus on one-sided clustering. As the co-occurring data elements involve the counts of sample-feature co-occurrences, it is more efficient to conduct two-sided clustering along the samples and features simultaneously. To take advantage of two-sided clustering for the co-occurrences in the scene of multi-view clustering, a two-sided multi-view clustering method is proposed, i.e., multi-view information-theoretic co-clustering (MV-ITCC). The proposed method realizes two-sided clustering for co-occurring multi-view data under the formulation of information theory. More specifically, it exploits the agreement and disagreement among views by sharing a common clustering results along the sample dimension and keeping the clustering results of each view specific along the feature dimension. In addition, the mechanism of maximum entropy is also adopted to control the importance of different views, which can give a right balance in leveraging the agreement and disagreement. Extensive experiments are conducted on text and image multi-view datasets. The results clearly demonstrate the superiority of the proposed method.
AB - Multi-view clustering has received much attention recently. Most of the existing multi-view clustering methods only focus on one-sided clustering. As the co-occurring data elements involve the counts of sample-feature co-occurrences, it is more efficient to conduct two-sided clustering along the samples and features simultaneously. To take advantage of two-sided clustering for the co-occurrences in the scene of multi-view clustering, a two-sided multi-view clustering method is proposed, i.e., multi-view information-theoretic co-clustering (MV-ITCC). The proposed method realizes two-sided clustering for co-occurring multi-view data under the formulation of information theory. More specifically, it exploits the agreement and disagreement among views by sharing a common clustering results along the sample dimension and keeping the clustering results of each view specific along the feature dimension. In addition, the mechanism of maximum entropy is also adopted to control the importance of different views, which can give a right balance in leveraging the agreement and disagreement. Extensive experiments are conducted on text and image multi-view datasets. The results clearly demonstrate the superiority of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85082865748&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85082865748
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 379
EP - 386
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -