Multi-task feature learning for knowledge graph enhanced recommendation

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, Minyi Guo

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

457 Citations (Scopus)

Abstract

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain satisfactory performance even if user-item interactions are sparse.

Original languageEnglish
Title of host publicationThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PublisherAssociation for Computing Machinery, Inc
Pages2000-2010
Number of pages11
ISBN (Electronic)9781450366748
DOIs
Publication statusPublished - 13 May 2019
Event2019 World Wide Web Conference, WWW 2019 - San Francisco, United States
Duration: 13 May 201917 May 2019

Publication series

NameThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019

Conference

Conference2019 World Wide Web Conference, WWW 2019
Country/TerritoryUnited States
CitySan Francisco
Period13/05/1917/05/19

Keywords

  • Knowledge graph
  • Multi-task learning
  • Recommender systems

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Multi-task feature learning for knowledge graph enhanced recommendation'. Together they form a unique fingerprint.

Cite this