TY - JOUR
T1 - Multi-source satellite reveals the heterogeneity in water storage change over northwestern China in recent decades
AU - Liu, Qing
AU - Xu, Yuyue
AU - Chen, Jianli
AU - Cheng, Xing
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/9
Y1 - 2023/9
N2 - The northwestern China (NWC) generally suffers from severe water shortages. To improve the management and utilization of the limited water storage in NWC, it is crucial to explore the distribution and variation of water storage. Here, we obtained the variations of terrestrial water storage (TWS), surface water area (SWA), and groundwater storage (GWS) in NWC (which refers to Xinjiang Uyghur Autonomous Region in the study) from 2002 to 2018 based on multi-source satellite data, and analyzed the factors influencing water storage changes. The results indicated that (1) SWA exhibited an increasing trend with 40.90 km2/year from 2002 to 2018 based on main lakes/reservoirs and rivers water area in NWC, due to the increase of precipitation and glacier melting. TWS and GWS showed a decreasing trend with a mean rate of −1.25 mm/year and −1.08 mm/year from 2002 to 2018 in NWC, respectively, due to the increase of arable land area and water consumption. (2) SWA in northern and southern NWC showed a decrease (-0.72 km2/year) and an increase (51.14 km2/year) from 2002 to 2018, respectively. The different rates are due to regional precipitation and temperature variations. TWS in northern and southern NWC showed a declining of −0.14 mm/year and −1.94 mm/year, respectively. GWS in northern and southern NWC showed a declining of −0.55 mm/year and −1.72 mm/year, respectively. The differences are related to the greater evapotranspiration and irrigation water consumption in southern than northern NWC. This study enriches the information on water storage in NWC and provides useful guidance for local water resource management and protection.
AB - The northwestern China (NWC) generally suffers from severe water shortages. To improve the management and utilization of the limited water storage in NWC, it is crucial to explore the distribution and variation of water storage. Here, we obtained the variations of terrestrial water storage (TWS), surface water area (SWA), and groundwater storage (GWS) in NWC (which refers to Xinjiang Uyghur Autonomous Region in the study) from 2002 to 2018 based on multi-source satellite data, and analyzed the factors influencing water storage changes. The results indicated that (1) SWA exhibited an increasing trend with 40.90 km2/year from 2002 to 2018 based on main lakes/reservoirs and rivers water area in NWC, due to the increase of precipitation and glacier melting. TWS and GWS showed a decreasing trend with a mean rate of −1.25 mm/year and −1.08 mm/year from 2002 to 2018 in NWC, respectively, due to the increase of arable land area and water consumption. (2) SWA in northern and southern NWC showed a decrease (-0.72 km2/year) and an increase (51.14 km2/year) from 2002 to 2018, respectively. The different rates are due to regional precipitation and temperature variations. TWS in northern and southern NWC showed a declining of −0.14 mm/year and −1.94 mm/year, respectively. GWS in northern and southern NWC showed a declining of −0.55 mm/year and −1.72 mm/year, respectively. The differences are related to the greater evapotranspiration and irrigation water consumption in southern than northern NWC. This study enriches the information on water storage in NWC and provides useful guidance for local water resource management and protection.
KW - Climatic factors
KW - GRACE
KW - Human activities
KW - Northwestern China
KW - Water storage change
UR - http://www.scopus.com/inward/record.url?scp=85166002840&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2023.129953
DO - 10.1016/j.jhydrol.2023.129953
M3 - Journal article
AN - SCOPUS:85166002840
SN - 0022-1694
VL - 624
JO - Journal of Hydrology
JF - Journal of Hydrology
M1 - 129953
ER -