Multi-scale modeling of shear banding in iron-based metallic glasses

Research output: Journal article publicationJournal articleAcademic researchpeer-review

3 Citations (Scopus)

Abstract

Multi-scale modeling approaches are developed to investigate the deformation mechanisms in iron-based metallic glasses. The shear band formation and crack propagation in the iron-based metallic glasses are investigated using a phase-field phenomenological model. The parameters which are necessary to the formulism of mesoscopic phase-field modeling, e.g., the surface energy, activation energy and elastic constants related to the formation of free-volume defects, are obtained by ab initio molecular dynamics simulations on an amorphous Fe80Si10B10 model system. The important features of shear banding such as shear band width and crack propagation velocity obtained from the multi-scale modeling are consistent with those of experiments. These results demonstrate that the mechanical behaviors of bulk metallic glasses can be understood by the multi-scale modeling developed in this study.
Original languageEnglish
JournalJournal of Alloys and Compounds
Volume504
Issue numberSUPPL. 1
DOIs
Publication statusPublished - 1 Aug 2010

Keywords

  • Atomic scale structure
  • Computer simulations
  • Metallic glasses

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials
  • Materials Chemistry
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Multi-scale modeling of shear banding in iron-based metallic glasses'. Together they form a unique fingerprint.

Cite this