TY - JOUR
T1 - Multi-omics to predict acute radiation esophagitis in patients with lung cancer treated with intensity-modulated radiation therapy
AU - Zheng, Xiaoli
AU - Guo, Wei
AU - Wang, Yunhan
AU - Zhang, Jiang
AU - Zhang, Yuanpeng
AU - Cheng, Chen
AU - Teng, Xinzhi
AU - Lam, Saikit
AU - Zhou, Ta
AU - Ma, Zongrui
AU - Liu, Ruining
AU - Wu, Hui
AU - Ge, Hong
AU - Cai, Jing
AU - Li, Bing
N1 - Funding Information:
This research was partly supported by the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research (SBGJ202103038 and SBGJ202102056), Henan Province Key R&D and Promotion Project (Science and Technology Research) (2221023100152), Key Science and Technology Project of Henan Province (222102310253), Natural Science Foundation of Henan Province of China (222300420575 and 232300420231), Shenzhen-Hong Kong-Macau S&T Program (Category C) (SGDX20201103095002019), Innovation and Technology Fund—Mainland-Hong Kong Joint Funding Scheme (ITF-MHKJFS) (MHP/005/20), and Health and Medical Research Fund (HMRF 09200576), the Health Bureau, the Government of the Hong Kong Special Administrative Region.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Purpose: The study aimed to predict acute radiation esophagitis (ARE) with grade ≥ 2 for patients with locally advanced lung cancer (LALC) treated with intensity-modulated radiation therapy (IMRT) using multi-omics features, including radiomics and dosiomics. Methods: 161 patients with stage IIIA−IIIB LALC who received chemoradiotherapy (CRT) or radiotherapy by IMRT with a prescribed dose from 45 to 70 Gy from 2015 to 2019 were enrolled retrospectively. All the toxicity gradings were given following the Common Terminology Criteria for Adverse Events V4.0. Multi-omics features, including radiomics, dosiomics (including dose−volume histogram dosimetric parameters), were extracted based on the planning CT image and three-dimensional dose distribution. All data were randomly divided into training cohorts (N = 107) and testing cohorts (N = 54). In the training cohorts, features with reliably high outcome relevance and low redundancy were selected under random patient subsampling. Four classification models (using clinical factors (CF) only, using radiomics features (RFs) only, dosiomics features (DFs) only, and the hybrid features (HFs) containing clinical factors, radiomics and dosiomics) were constructed employing the Ridge classifier using two-thirds of randomly selected patients as the training cohort. The remaining patient was treated as the testing cohort. A series of models were built with 30 times training–testing splits. Their performances were assessed using the area under the ROC curve (AUC) and accuracy. Results: Among all patients, 51 developed ARE grade ≥ 2, with an incidence of 31.7%. Next, 8990 radiomics and 213 dosiomics features were extracted, and 3, 6, 12, and 13 features remained after feature selection in the CF, DF, RF and DF models, respectively. The RF and HF models achieved similar classification performance, with the training and testing AUCs of 0.796 ± 0.023 (95% confidence interval (CI [0.79, 0.80])/0.744 ± 0.044 (95% CI [0.73, 0.76]) and 0.801 ± 0.022 (95% CI [0.79, 0.81]) (p = 0.74), respectively. The model performances using CF and DF features were poorer, with training and testing AUCs of 0.573 ± 0.026 (95% CI [0.56, 0.58])/ 0.509 ± 0.072 (95% CI [0.48, 0.53]) and 0.679 ± 0.027 (95% CI [0.67, 0.69])/0.604 ± 0.041 (95% CI [0.53, 0.63]) compared with the above two models (p < 0.001), respectively. Conclusions: In LALC patients treated with CRT IMRT, the ARE grade ≥ 2 can be predicted using the pretreatment radiotherapy image features. To predict ARE, the multi-omics features had similar predictability with radiomics features; however, the dosiomics features and clinical factors had a limited classification performance.
AB - Purpose: The study aimed to predict acute radiation esophagitis (ARE) with grade ≥ 2 for patients with locally advanced lung cancer (LALC) treated with intensity-modulated radiation therapy (IMRT) using multi-omics features, including radiomics and dosiomics. Methods: 161 patients with stage IIIA−IIIB LALC who received chemoradiotherapy (CRT) or radiotherapy by IMRT with a prescribed dose from 45 to 70 Gy from 2015 to 2019 were enrolled retrospectively. All the toxicity gradings were given following the Common Terminology Criteria for Adverse Events V4.0. Multi-omics features, including radiomics, dosiomics (including dose−volume histogram dosimetric parameters), were extracted based on the planning CT image and three-dimensional dose distribution. All data were randomly divided into training cohorts (N = 107) and testing cohorts (N = 54). In the training cohorts, features with reliably high outcome relevance and low redundancy were selected under random patient subsampling. Four classification models (using clinical factors (CF) only, using radiomics features (RFs) only, dosiomics features (DFs) only, and the hybrid features (HFs) containing clinical factors, radiomics and dosiomics) were constructed employing the Ridge classifier using two-thirds of randomly selected patients as the training cohort. The remaining patient was treated as the testing cohort. A series of models were built with 30 times training–testing splits. Their performances were assessed using the area under the ROC curve (AUC) and accuracy. Results: Among all patients, 51 developed ARE grade ≥ 2, with an incidence of 31.7%. Next, 8990 radiomics and 213 dosiomics features were extracted, and 3, 6, 12, and 13 features remained after feature selection in the CF, DF, RF and DF models, respectively. The RF and HF models achieved similar classification performance, with the training and testing AUCs of 0.796 ± 0.023 (95% confidence interval (CI [0.79, 0.80])/0.744 ± 0.044 (95% CI [0.73, 0.76]) and 0.801 ± 0.022 (95% CI [0.79, 0.81]) (p = 0.74), respectively. The model performances using CF and DF features were poorer, with training and testing AUCs of 0.573 ± 0.026 (95% CI [0.56, 0.58])/ 0.509 ± 0.072 (95% CI [0.48, 0.53]) and 0.679 ± 0.027 (95% CI [0.67, 0.69])/0.604 ± 0.041 (95% CI [0.53, 0.63]) compared with the above two models (p < 0.001), respectively. Conclusions: In LALC patients treated with CRT IMRT, the ARE grade ≥ 2 can be predicted using the pretreatment radiotherapy image features. To predict ARE, the multi-omics features had similar predictability with radiomics features; however, the dosiomics features and clinical factors had a limited classification performance.
KW - Acute radiation esophagitis
KW - Dosiomics
KW - Lung cancer
KW - Machine learning
KW - Radiomics
KW - Radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=85150531628&partnerID=8YFLogxK
U2 - 10.1186/s40001-023-01041-6
DO - 10.1186/s40001-023-01041-6
M3 - Journal article
C2 - 36935504
AN - SCOPUS:85150531628
SN - 0949-2321
VL - 28
JO - European Journal of Medical Research
JF - European Journal of Medical Research
IS - 1
M1 - 126
ER -