TY - JOUR
T1 - Multi-objective semi-supervised classifier ensemble
AU - Yu, Zhiwen
AU - Zhang, Yidong
AU - Chen, C.L. Philip
AU - You, Jia
AU - Wong, Hau San
AU - Dai, Dan
AU - Wu, Si
AU - Zhang, Jun
PY - 2019/6
Y1 - 2019/6
N2 - Classification of high-dimensional data with very limited labels is a challenging task in the field of data mining and machine learning. In this paper, we propose the multiobjective semisupervised classifier ensemble (MOSSCE) approach to address this challenge. Specifically, a multiobjective subspace selection process (MOSSP) in MOSSCE is first designed to generate the optimal combination of feature subspaces. Three objective functions are then proposed for MOSSP, which include the relevance of features, the redundancy between features, and the data reconstruction error. Then, MOSSCE generates an auxiliary training set based on the sample confidence to improve the performance of the classifier ensemble. Finally, the training set, combined with the auxiliary training set, is used to select the optimal combination of basic classifiers in the ensemble, train the classifier ensemble, and generate the final result. In addition, diversity analysis of the ensemble learning process is applied, and a set of nonparametric statistical tests is adopted for the comparison of semisupervised classification approaches on multiple datasets. The experiments on 12 gene expression datasets and two large image datasets show that MOSSCE has a better performance than other state-of-the-art semisupervised classifiers on high-dimensional data.
AB - Classification of high-dimensional data with very limited labels is a challenging task in the field of data mining and machine learning. In this paper, we propose the multiobjective semisupervised classifier ensemble (MOSSCE) approach to address this challenge. Specifically, a multiobjective subspace selection process (MOSSP) in MOSSCE is first designed to generate the optimal combination of feature subspaces. Three objective functions are then proposed for MOSSP, which include the relevance of features, the redundancy between features, and the data reconstruction error. Then, MOSSCE generates an auxiliary training set based on the sample confidence to improve the performance of the classifier ensemble. Finally, the training set, combined with the auxiliary training set, is used to select the optimal combination of basic classifiers in the ensemble, train the classifier ensemble, and generate the final result. In addition, diversity analysis of the ensemble learning process is applied, and a set of nonparametric statistical tests is adopted for the comparison of semisupervised classification approaches on multiple datasets. The experiments on 12 gene expression datasets and two large image datasets show that MOSSCE has a better performance than other state-of-the-art semisupervised classifiers on high-dimensional data.
U2 - 10.1109/TCYB.2018.2824299
DO - 10.1109/TCYB.2018.2824299
M3 - Journal article
SN - 2168-2267
VL - 49
SP - 2280
EP - 2293
JO - IEEE Transactions on Cybernetics
JF - IEEE Transactions on Cybernetics
IS - 6
ER -