Multi-Component Crosslinked Hydrogel Electrolyte toward Dendrite-Free Aqueous Zn Ion Batteries with High Temperature Adaptability

Hongyu Lu, Jisong Hu, Litong Wang, Jianzhu Li, Xiang Ma, Zhicheng Zhu, Heqi Li, Yingjie Zhao, Yujie Li, Jingxin Zhao, Bingang Xu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

91 Citations (Scopus)

Abstract

Rechargeable aqueous Zn-ion batteries (ZIBs) are always regarded as a promising energy storage device owing to their higher safety and durability. However, two problems have become the main trouble for the practical application of ZIBs such as the dendrite growth of Zn metal anode in electrolyte and the freezing of water solvent at low temperature. Herein, to overcome these challenges, a new strategy, multi-component crosslinked hydrogel electrolyte, is proposed to inhibit Zn dendrites and realize low temperature environmental adaptability for ZIBs. Benefitting from the superior inhibition effect of the polyacrylamide and dimethyl sulfoxide (DMSO) on Zn dendrites, the coulombic efficiency of the symmetric cell of ≈99.5% is achieved during the Zn plating/stripping over 1 300 h, and the assembled full-cell demonstrates the large specific capacity of 265.2 mAh g-1 and high cyclic stability with the capacity retention of 95.27% after 3 000 cycles. In addition, the full-cell delivers stable operation at a wide temperature range, from 60 to −40 °C, due to the introduction of additive DMSO. This work provides an inspired strategy and novel opportunities to realize a dendrite-free and wide-temperature rechargeable aqueous Zn-ion energy storage system.

Original languageEnglish
Article number2112540
JournalAdvanced Functional Materials
Volume32
Issue number19
DOIs
Publication statusPublished - 9 May 2022

Keywords

  • aqueous Zn ion batteries
  • highly reversible Zn anodes
  • hydrogel electrolytes
  • wide-temperature range
  • Zn dendrites

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Multi-Component Crosslinked Hydrogel Electrolyte toward Dendrite-Free Aqueous Zn Ion Batteries with High Temperature Adaptability'. Together they form a unique fingerprint.

Cite this