Multi-channel graph neural networks

Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, Xia Hu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

20 Citations (Scopus)


The classification of graph-structured data has become increasingly crucial in many disciplines. It has been observed that the implicit or explicit hierarchical community structures preserved in real-world graphs could be useful for downstream classification applications. A straightforward way to leverage the hierarchical structures is to make use of pooling algorithm to cluster nodes into fixed groups, and shrink the input graph layer by layer to learn the pooled graphs. However, the pool shrinking discards graph details to make it hard to distinguish two non-isomorphic graphs, and the fixed clustering ignores the inherent multiple characteristics of nodes. To compensate the shrinking loss and learn the various nodes' characteristics, we propose the multi-channel graph neural networks (MuchGNN). Motivated by the underlying mechanisms developed in convolutional neural networks, we define the tailored graph convolutions to learn a series of graph channels at each layer, and shrink the graphs hierarchically to encode the pooled structures. Experimental results on real-world datasets demonstrate the superiority of MuchGNN over the state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Number of pages7
ISBN (Electronic)9780999241165
Publication statusPublished - 2020
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823


Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Period1/01/21 → …

ASJC Scopus subject areas

  • Artificial Intelligence


Dive into the research topics of 'Multi-channel graph neural networks'. Together they form a unique fingerprint.

Cite this