TY - GEN
T1 - MulGT
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
AU - Zhao, Weiqin
AU - Wang, Shujun
AU - Yeung, Maximus
AU - Niu, Tianye
AU - Yu, Lequan
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Whole slide image (WSI) has been widely used to assist automated diagnosis under the deep learning fields. However, most previous works only discuss the SINGLE task setting which is not aligned with real clinical setting, where pathologists often conduct multiple diagnosis tasks simultaneously. Also, it is commonly recognized that the multi-task learning paradigm can improve learning efficiency by exploiting commonalities and differences across multiple tasks. To this end, we present a novel multi-task framework (i.e., MulGT) for WSI analysis by the specially designed Graph-Transformer equipped with Task-aware Knowledge Injection and Domain Knowledge-driven Graph Pooling modules. Basically, with the Graph Neural Network and Transformer as the building commons, our framework is able to learn task-agnostic low-level local information as well as task-specific high-level global representation. Considering that different tasks in WSI analysis depend on different features and properties, we also design a novel Task-aware Knowledge Injection module to transfer the task-shared graph embedding into task-specific feature spaces to learn more accurate representation for different tasks. Further, we elaborately design a novel Domain Knowledge-driven Graph Pooling module for each task to improve both the accuracy and robustness of different tasks by leveraging different diagnosis patterns of multiple tasks. We evaluated our method on two public WSI datasets from TCGA projects, i.e., esophageal carcinoma and kidney carcinoma. Experimental results show that our method outperforms single-task counterparts and the state-of-the-art methods on both tumor typing and staging tasks.
AB - Whole slide image (WSI) has been widely used to assist automated diagnosis under the deep learning fields. However, most previous works only discuss the SINGLE task setting which is not aligned with real clinical setting, where pathologists often conduct multiple diagnosis tasks simultaneously. Also, it is commonly recognized that the multi-task learning paradigm can improve learning efficiency by exploiting commonalities and differences across multiple tasks. To this end, we present a novel multi-task framework (i.e., MulGT) for WSI analysis by the specially designed Graph-Transformer equipped with Task-aware Knowledge Injection and Domain Knowledge-driven Graph Pooling modules. Basically, with the Graph Neural Network and Transformer as the building commons, our framework is able to learn task-agnostic low-level local information as well as task-specific high-level global representation. Considering that different tasks in WSI analysis depend on different features and properties, we also design a novel Task-aware Knowledge Injection module to transfer the task-shared graph embedding into task-specific feature spaces to learn more accurate representation for different tasks. Further, we elaborately design a novel Domain Knowledge-driven Graph Pooling module for each task to improve both the accuracy and robustness of different tasks by leveraging different diagnosis patterns of multiple tasks. We evaluated our method on two public WSI datasets from TCGA projects, i.e., esophageal carcinoma and kidney carcinoma. Experimental results show that our method outperforms single-task counterparts and the state-of-the-art methods on both tumor typing and staging tasks.
UR - http://www.scopus.com/inward/record.url?scp=85167973333&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85167973333
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 3606
EP - 3614
BT - AAAI-23 Technical Tracks 3
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
Y2 - 7 February 2023 through 14 February 2023
ER -