Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry

Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, Pingqing Fu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

12 Citations (Scopus)


Firework (FW) emission has strong impacts on air quality and public health. However, little is known about the molecular composition of FW-related airborne particulate matter (PM), especially the organic fraction. Here we describe the detailed molecular composition of Beijing PM collected before, during, and after a FW event in the evening of New Year's Eve in 2012. Subgroups of CHO, CHON, and CHOS were characterized using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. These subgroups comprise a substantial fraction of aromatic-like compounds with low O=C ratio and high degrees of unsaturation, some of which plausibly contributed to the formation of brown carbon in Beijing PM. Moreover, we found that the number concentration of sulfur-containing compounds, especially the organosulfates, increased dramatically during the FW event, whereas the number concentration of CHO and CHON doubled after the event, which was associated with multiple atmospheric aging processes including the multiphase redox chemistry driven by NOx, O3, and •OH. These findings highlight that FW emissions can lead to a sharp increase in high-molecular-weight compounds, particularly aromatic-like substances in urban particulate matter, which may affect the light absorption properties and adverse health effects of atmospheric aerosols.

Original languageEnglish
Pages (from-to)6803-6820
Number of pages18
JournalAtmospheric Chemistry and Physics
Issue number11
Publication statusPublished - 10 Jun 2020
Externally publishedYes

ASJC Scopus subject areas

  • Atmospheric Science


Dive into the research topics of 'Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry'. Together they form a unique fingerprint.

Cite this