Abstract
Zinc-air batteries (ZABs) are regarded as promising next-generation energy storage devices but limited by their sluggish oxygen reduction/evolution reactions (ORR/OER). Herein, the bifunctional catalyst consisting of MXene and metal compounds has been constructed via a controllable strategy. For demonstration, a 3D MXene framework with anchored heterostructure CoNi/CoNiP and nitrogen-doped carbon (NC) called H-CNP@M is constructed by metal-ion inducement and phosphorization. The bimetal-semiconductor heterostructure greatly enhances the catalytic performance. The H-CNP@M exhibits superior activities toward ORR (E1/2 = 0.833 V) and OER (η10 = 294 mV). Both aqueous and all-solid-state ZAB assembled with H-CNP@M demonstrate superior performance (peak power density of 166.5 mW/cm2 in aqueous case). This work provides a facile and general strategy to prepare MXene-supported bimetallic heterostructure for high-performance electrochemical energy devices.
Original language | English |
---|---|
Article number | 108318 |
Journal | Chinese Chemical Letters |
Volume | 34 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2023 |
Keywords
- Bifunctional electrocatalyst
- Heterostructure
- Metal-organic frameworks
- MXene
- Zn-air battery
ASJC Scopus subject areas
- General Chemistry