Modeling the effective emissivity of the urban canopy using sky view factor

Jinxin Yang, Man Sing Wong, Massimo Menenti, Janet Elizabeth Nichol

Research output: Journal article publicationJournal articleAcademic researchpeer-review

44 Citations (Scopus)

Abstract

(ISPRS). Surface emissivity is a critical parameter for studying city-, meso-, and micro-scale climate and energy balance. The emissivity of complex surfaces e.g. a forest or an urban canopy is an effective surface property since it depends on both surface materials and geometry. This study presents a novel methodology for estimating effective emissivity using sky view factor retrieved from airborne Lidar data, building GIS data, and land use and land cover classification data. First, a high correlation between the effective emissivity retrieved from ASTER TIR bands 10-14 and the sky view factor was observed (r2=0.93, 0.99, 0.99, 0.97, 0.97). When the sky view factor decreases, the effective emissivity tends to increase, which is mainly due to multiple scattering (cavity effect), thus increases the effective emissivity. A simplified model which assumes that reflection and scattering only occurs within a single pixel was developed. Results showed that the correlations between the modeled and the spectral (band) emissivity retrieved from the ASTER multispectral TIR data (five spectral bands) are high (r2=0.93, 0.99, 0.98, 0.93, 0.97), and with low RMSE (0.019, 0.016, 0.012, 0.003 and 0.004 from band 10-14 respectively). The emissivity derived from this simplified model, however, tends to be overestimated in band 10-12. Thus, a refined urban emissivity model based on sky view factor (UEM-SVF) which considers the scattering and reflection from adjacent pixels was developed in this study. Results show a good agreement with ASTER spectral (band) emissivity: r2=0.90, 0.98, 0.96, 0.94 and 0.96, and very low RMSE (0.006, 0.003, 0.004, 0.002 and 0.004). This study illustrates that the UEM-SVF can be useful for estimation of land surface emissivity of complex surfaces, and can further be used for accurate land surface temperature retrieval.
Original languageEnglish
Pages (from-to)211-219
Number of pages9
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume105
DOIs
Publication statusPublished - 1 Jul 2015

Keywords

  • Effective emissivity
  • Remote sensing
  • Urban geometry

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Computer Science Applications
  • Computers in Earth Sciences

Cite this