TY - GEN
T1 - Modeling scientific influence for research trending topic prediction
AU - Chen, Chengyao
AU - Wang, Zhitao
AU - Li, Wenjie
AU - Sun, Xu
PY - 2018/1/1
Y1 - 2018/1/1
N2 - With the growing volume of publications in the Computer Science (CS) discipline, tracking the research evolution and predicting the future research trending topics are of great importance for researchers to keep up with the rapid progress of research. Within a research area, there are many top conferences that publish the latest research results. These conferences mutually influence each other and jointly promote the development of the research area. To predict the trending topics of mutually influenced conferences, we propose a correlated neural influence model, which has the ability to capture the sequential properties of research evolution in each individual conference and discover the dependencies among different conferences simultaneously. The experiments conducted on a scientific dataset including conferences in artificial intelligence and data mining show that our model consistently outperforms the other state-of-the-art methods. We also demonstrate the interpretability and predictability of the proposed model by providing its answers to two questions of concern, i.e., what the next rising trending topics are and for each conference who the most influential peer is.
AB - With the growing volume of publications in the Computer Science (CS) discipline, tracking the research evolution and predicting the future research trending topics are of great importance for researchers to keep up with the rapid progress of research. Within a research area, there are many top conferences that publish the latest research results. These conferences mutually influence each other and jointly promote the development of the research area. To predict the trending topics of mutually influenced conferences, we propose a correlated neural influence model, which has the ability to capture the sequential properties of research evolution in each individual conference and discover the dependencies among different conferences simultaneously. The experiments conducted on a scientific dataset including conferences in artificial intelligence and data mining show that our model consistently outperforms the other state-of-the-art methods. We also demonstrate the interpretability and predictability of the proposed model by providing its answers to two questions of concern, i.e., what the next rising trending topics are and for each conference who the most influential peer is.
UR - http://www.scopus.com/inward/record.url?scp=85060489269&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85060489269
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 2111
EP - 2118
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -