Abstract
The aluminum-air battery has potential to serve as a near-term power source for electric vehicles. Parasitic hydrogen evolution caused by anode corrosion during the discharge process, however, has long been recognized as an obstacle to further commercialization of the aluminum-air battery. This paper focuses on the parasitic reaction impacts, with an aim of better understanding and managing the parasitic reaction. On the basis of a mathematical model, effects of the parasitic hydrogen evolution on cell flow field, ionic mass transfer, and current density are investigated. Besides, the possibility of using the parasitically evolved hydrogen to increase the total power output is evaluated.
Original language | English |
---|---|
Pages (from-to) | 3748-3753 |
Number of pages | 6 |
Journal | Energy and Fuels |
Volume | 24 |
Issue number | 7 |
DOIs | |
Publication status | Published - 15 Jul 2010 |
ASJC Scopus subject areas
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology