Modeling and Simulation of Flow Batteries

Oladapo Christopher Esan, Xingyi Shi, Zhefei Pan, Xiaoyu Huo, Liang An, T. S. Zhao

Research output: Journal article publicationReview articleAcademic researchpeer-review

132 Citations (Scopus)

Abstract

Flow batteries have received extensive recognition for large-scale energy storage such as connection to the electricity grid, due to their intriguing features and advantages including their simple structure and principles, long operation life, fast response, and inbuilt safety. Market penetration of this technology, however, is still hindered by some critical issues such as electroactive species crossover and its corresponding capacity loss, undesirable side reactions, scale-up and optimization of structural geometries at different scales, and battery operating conditions. Overcoming these remaining challenges requires a comprehensive understanding of the interrelated structural design parameters and the multivariable operations within the battery system. Numerical modeling and simulation are effective tools not only for gaining an understanding of the underlying mechanisms at different spatial and time scales of flow batteries but also for cost-effective optimization of reaction interfaces, battery components, and the entire system. Here, the research and development progress in modeling and simulation of flow batteries is presented. In addition to the most studied all-vanadium redox flow batteries, the modelling and simulation efforts made for other types of flow battery are also discussed. Finally, perspectives for future directions on model development for flow batteries, particularly for the ones with limited model-based studies are highlighted.

Original languageEnglish
Article number2000758
JournalAdvanced Energy Materials
Volume10
Issue number31
DOIs
Publication statusPublished - 1 Aug 2020

Keywords

  • battery performance
  • flow batteries
  • modeling
  • simulation
  • system optimization

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Modeling and Simulation of Flow Batteries'. Together they form a unique fingerprint.

Cite this