Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search

Pak Kin Wong, Ka In Wong, Chi Man Vong, Chun Shun Cheung

Research output: Journal article publicationJournal articleAcademic researchpeer-review

93 Citations (Scopus)

Abstract

This study presents the optimization of biodiesel engine performance that can achieve the goal of fewer emissions, low fuel cost and wide engine operating range. A new biodiesel engine modeling and optimization framework based on extreme learning machine (ELM) is proposed. As an accurate model is required for effective optimization result, kernel-based ELM (K-ELM) is used instead of basic ELM because K-ELM can provide better generalization performance, and the randomness of basic ELM does not occur in K-ELM. By using K-ELM, a biodiesel engine model is first created based on experimental data. Logarithmic transformation of dependent variables is used to alleviate the problems of data scarcity and data exponentiality simultaneously. With the K-ELM engine model, cuckoo search (CS) is then employed to determine the optimal biodiesel ratio. A flexible objective function is designed so that various user-defined constraints can be applied. As an illustrative study, the fuel price in Macau is used to perform the optimization. To verify the modeling and optimization framework, the K-ELM model is compared with a least-squares support vector machine (LS-SVM) model, and the CS optimization result is compared with particle swarm optimization and experimental results. The evaluation result shows that K-ELM can achieve comparable performance to LS-SVM, resulting in a reliable prediction result for optimization. It also shows that the optimization results based on CS is effective.
Original languageEnglish
Pages (from-to)640-647
Number of pages8
JournalRenewable Energy
Volume74
DOIs
Publication statusPublished - 1 Feb 2015

Keywords

  • Biodiesel
  • Cuckoo search
  • Engine optimization
  • Kernel-based extreme learning machine

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment

Cite this