TY - GEN
T1 - Mobility increases the data offloading ratio in D2D caching networks
AU - Wang, Rui
AU - Zhang, Jun
AU - Song, S. H.
AU - Letaief, K. B.
PY - 2017/5/21
Y1 - 2017/5/21
N2 - Caching at mobile devices, accompanied by device-to-device (D2D) communications, is one promising technique to accommodate the exponentially increasing mobile data traffic. While most previous works ignored user mobility, there are some recent works taking it into account. However, the duration of user contact times has been ignored, making it difficult to explicitly characterize the effect of mobility. In this paper, we adopt the alternating renewal process to model the duration of both the contact and inter-contact times, and investigate how the caching performance is affected by mobility. The data offloading ratio, i.e., the proportion of requested data that can be delivered via D2D links, is taken as the performance metric. We first approximate the distribution of the communication time for a given user by beta distribution through moment matching. With this approximation, an accurate expression of the data offloading ratio is derived. For the homogeneous case where the average contact and intercontact times of different user pairs are identical, we prove that the data offloading ratio increases with the user moving speed, assuming that the transmission rate remains the same. Simulation results are provided to show the accuracy of the approximate result, and also validate the effect of user mobility.
AB - Caching at mobile devices, accompanied by device-to-device (D2D) communications, is one promising technique to accommodate the exponentially increasing mobile data traffic. While most previous works ignored user mobility, there are some recent works taking it into account. However, the duration of user contact times has been ignored, making it difficult to explicitly characterize the effect of mobility. In this paper, we adopt the alternating renewal process to model the duration of both the contact and inter-contact times, and investigate how the caching performance is affected by mobility. The data offloading ratio, i.e., the proportion of requested data that can be delivered via D2D links, is taken as the performance metric. We first approximate the distribution of the communication time for a given user by beta distribution through moment matching. With this approximation, an accurate expression of the data offloading ratio is derived. For the homogeneous case where the average contact and intercontact times of different user pairs are identical, we prove that the data offloading ratio increases with the user moving speed, assuming that the transmission rate remains the same. Simulation results are provided to show the accuracy of the approximate result, and also validate the effect of user mobility.
UR - http://www.scopus.com/inward/record.url?scp=85028361790&partnerID=8YFLogxK
U2 - 10.1109/ICC.2017.7997463
DO - 10.1109/ICC.2017.7997463
M3 - Conference article published in proceeding or book
AN - SCOPUS:85028361790
T3 - IEEE International Conference on Communications
BT - 2017 IEEE International Conference on Communications, ICC 2017
A2 - Debbah, Merouane
A2 - Gesbert, David
A2 - Mellouk, Abdelhamid
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE International Conference on Communications, ICC 2017
Y2 - 21 May 2017 through 25 May 2017
ER -