Microfluidic reactors for plasmonic photocatalysis using gold nanoparticles

Huaping Jia, Yat Lam Wong, Aoqun Jian, Chi Chung Tsoi, Meiling Wang, Wanghao Li, Wendong Zhang, Shengbo Sang, Xuming Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

16 Citations (Scopus)


This work reports a microfluidic reactor that utilizes gold nanoparticles (AuNPs) for the highly efficient photocatalytic degradation of organic pollutants under visible light. The bottom of microchamber has a TiO2 film covering a layer of AuNPs (namely, TiO2/AuNP film) deposited on the F-doped SnO2 (FTO) substrate. The rough surface of FTO helps to increase the surface area and the AuNPs enables the strong absorption of visible light to excite electron/hole pairs, which are then transferred to the TiO2 film for photodegradation. The TiO2 film also isolates the AuNPs from the solution to avoid detachment and photocorrosion. Experiments show that the TiO2/AuNP film has a strong absorption over 400-800 nm and enhances the reaction rate constant by 13 times with respect to the bare TiO2 film for the photodegradation of methylene blue. In addition, the TiO2/AuNP microreactor exhibits a negligible reduction of photoactivity after five cycles of repeated tests, which verifies the protective function of the TiO2 layer. This plasmonic photocatalytic microreactor draws the strengths of microfluidics and plasmonics, and may find potential applications in continuous photocatalytic water treatment and photosynthesis. The fabrication of the microreactor uses manual operation and requires no photolithography, making it simple, easy, and of low cost for real laboratory and field tests.

Original languageEnglish
Article number869
Issue number12
Publication statusPublished - 1 Dec 2019


  • Gold nanoparticles
  • Localized surface plasmon resonance
  • Microfluidics
  • Microreactors
  • Visible light photocatalysis

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Microfluidic reactors for plasmonic photocatalysis using gold nanoparticles'. Together they form a unique fingerprint.

Cite this