Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm-2

Mingwei Fang, Linli Xu, Hongyang Zhang, Ying Zhu, Wai Yeung Wong (Corresponding Author)

Research output: Journal article publicationJournal articleAcademic researchpeer-review

61 Citations (Scopus)

Abstract

The electrochemical reduction reaction of carbon dioxide (CO2RR) to the desired feedstocks with a high faradaic efficiency (FE) and high stability at a high current density is of great importance but challenging owing to its poor electrochemical stability and competition with the hydrogen evolution reaction (HER). Guided by theoretical calculations, herein, a series of novel metalloporphyrin-linked mercurated graphynes (Hg-MTPP) were designed as electrocatalysts for CO2RR, since the mercurated graphyne blocks induce a high HER overpotential. Notably, Hg-CoTPP was synthesized and produced a maximum CO FE of 95.6% at -0.76 V (vs reversible hydrogen electrode (RHE)) in an H-type cell, and a CO FE of 91.2% even at -1.26 V (vs RHE), due to a great suppression of HER. The Hg-CoTPP combined with N-doped graphene (Hg-CoTPP/NG) was able to achieve a high CO FE of nearly 100% at a current density of 1.2 A cm-2 and particularly a ground-breaking stability of over 360 h at around 420 mA cm-2 in a flow-type cell. Further experimental and computational results revealed that the mercurated graphyne of Hg-CoTPP brings a high HER overpotential and tunes the d-band electronic states of the metal center that make the d-band center closer to the Fermi level, thus enhancing the bonding of *COOH intermediates on Hg-CoTPP. The introduction of NG could shorten the Co-N coordination bonds, which enhances electron transfer to the metal center to lower the energy barrier for *COOH. Our results illustrated that Hg-MTPP could serve as a new class of two-dimensional (2D) materials and provide a design concept for developing efficient electrocatalysts for CO2RR in commercial applications.

Original languageEnglish
Pages (from-to)15143-15154
Number of pages12
JournalJournal of the American Chemical Society
Volume144
Issue number33
DOIs
Publication statusPublished - 24 Aug 2022

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm-2'. Together they form a unique fingerprint.

Cite this